РГР2 Анализ решений взаимно двойственных задач линейного программирования Индивидуальное задание

Для изготовления трех видов продукции (A, B, C) используется три вида ресурсов (1, 2, 3). Объем ресурса $(b_i, i=\overline{1,3})$, нормы его расхода a_{ij} на единицу продукции и цена $(c_j, j=\overline{1,3})$ продукции заданы таблицей (номер таблицы соответствует номеру варианта).

По заданной таблице:

- 1. Составьте математическую модель определения оптимального плана выпуска продукции из условия ее максимальной стоимости.
 - 2. Составьте математическую модель двойственной задачи.
 - 3. Дайте экономическую интерпретацию двойственной задачи.
 - 4. Решите исходную задачу симплекс-методом.
 - 5. Используя теоремы двойственности, найдите оптимальное решение двойственной задачи.
- 6. Определите дефицитность ресурсов. Расположите ресурсы в порядке убывания дефицитности.
- 7. Найдите интервалы устойчивости двойственных оценок (пределы изменения запасов ресурсов).
- 8. Найдите интервалы устойчивости оптимального решения (пределы изменения коэффициентов целевой функции).
- 9. Определите изменение максимальной стоимости продукции при изменении объема ресурсов на величину $\Delta b_i = 0,1 \cdot b_i$ ($i = \overline{1,3}$), предварительно установив, находятся ли эти изменения в интервалах устойчивости двойственных оценок. Оцените раздельное и суммарное влияние этих изменений.
- 10. Оцените целесообразность введения в план новой продукции, для которой заданы: цена $c_4 = 10$ и вектор-столбец $(1, 2, 1)^T$, задающий нормы затрат ресурсов на производство этой продукции.
- 11. Оцените целесообразность закупки дополнительно 30 единиц первого ресурса по цене p_1 = 3 у. е.

Таблица 1

•				
Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	100	1	6	1
2	300	1	3	1
3	250	1	4	3
Пена пролукции		1	4	3

Таблица 2

Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	100	5	6	7
2	300	4	5	6
3	250	7	1	2
Цена продукции		3	5	6

Таблица 3

Ресурс	Объем	Нормы расхода		
	pecypca	A	В	С
1	120	1	3	2
2	150	2	1	4
3	75	3	7	1
Цена продукции		5	10	12

Таблица 4

Pecypc	Объем	Нормы расхода		
	ресурса	A	В	C
1	120	8	5	4
2	150	3	8	1
3	75	2	5	6
Цена продукции		5	10	12

Таблица 5

<u> </u>				
Pecypc	Объем	Нормы расхода		
	ресурса	A	В	С
1	125	2	1	1
2	175	3	2	1
3	250	1	4	3
Цена продукции		2	4	3

Таблица 6

Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	125	3	4	6
2	175	5	4	3
3	250	2	6	7
Цена продукции		2	4	3

Таблица 7

Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	190	1	2	5
2	120	12	4	9
3	60	7	1	3
Цена продукции		10	11	13

Таблица 8

Pecypc	Объем	Нормы расхода		
	pecypca	Ā	В	С
1	190	5	4	3
2	120	7	1	8
3	60	4	3	7
Цена продукции		10	11	13

Таблица 9

Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	180	4	3	1
2	90	4	5	9
3	120	2	1	6
Цена продукции		12	5	3

Таблица 10

Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	180	5	4	6
2	90	7	6	8
3	120	1	5	8
Цена продукции		12	5	3

Таблица 11

1 4001111111111111111111111111111111111				
Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	100	1	3	5
2	150	6	4	2
3	300	1	3	7
Цена продукции		3	4	6

Таблица 12

Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	100	6	7	4
2	150	2	5	1
3	300	3	4	5
Цена продукции		3	4	6

Таблица 13

Pecypc

2

Цена продукции

Таолица 13				
Объем	Нормы расхода			
pecypca	A	В	С	
200	2	4	5	
180	1	2	6	
300	Ω	3	4	

2

Таблица 14

Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	200	3	5	70
2	180	4	5	8
3	300	1	5	1
Цена продукции		13	5	2

Таблица 15

Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	70	6	4	2
2	140	7	11	10
3	200	4	5	8
Цена продукции		12	13	9

Таблица 16

13

Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	70	3	2	1
2	140	5	6	7
3	200	1	2	5
Пена пр	олукнии	12	13	9

Таблица 17

•				
Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	100	9	2	1
2	300	1	3	1
3	250	2	9	3
Цена пр	одукции	1	4	1

Таблица 18

, -				
Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	100	4	8	2
2	300	8	4	3
3	250	2	3	5
Цена продукции		12	5	3

Таблица 19

Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	120	1	3	2
2	150	2	1	1
3	75	2	2	1
Цена пр	одукции	5	10	12

Таблица 20

Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	120	7	2	1
2	150	4	5	8
3	75	6	4	2
Цена пр	одукции	10	20	8

Таблица 21

Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	125	2	1	1
2	175	8	2	1
3	250	3	4	3
Цена продукции		2	4	4

Таблица 22

Pecypc	Объем	Нормы расхода		
	pecypca	A	В	С
1	125	1	2	3
2	175	4	3	4
3	250	3	4	2
Цена пр	одукции	13	12	8

Таблица 23

Pecypc	Объем	Нормы расхода		
	pecypca	Ā	В	С
1	150	1	8	2
2	120	3	1	4
3	60	1	8	3
Цена пр	одукции	10	11	12

Таблица 24

Pecypc	Объем	Нормы расхода		
	pecypca	A	В	C
1	150	3	4	1
2	120	5	2	8
3	60	6	7	4
Цена пр	одукции	15	14	9

Таблица 25

Pe-	Объем	Нормы расхода				
cypc						
	pecyp-	A B C				
	ca					
1	190	2	5			
2	120	4	5	9		
3	60	7	1	6		
Цена	продук-	12	9	25		
	ии					

Таблица 26

Pe-	Объ-	Нормы расхода				
cypc	ем					
	pe-	A B C				
	cypca					
1	210	5 6 3				
2	100	4	2	8		
3	90	4	3	5		
Цена пр	одук-	10	11	13		
ЦИ	И					

Таблица 27

Pe-	Объем	Нормы расхо-			
cypc			да		
	pecypca	A	В	С	
1	180	4 4			
2	100	6	5	9	
3	120	2	1	6	
Цена	продук-	12	5	3	
I	ции				

Таблица 28

Pe-	Объ-	Нормы расхода				
cypc	ем					
	pecyp-	A	В	С		
	ca					
1	90	3	2	4		
2	120	5	3	7		
3	180	3	2	5		
Цена	продук-	12	13	9		
I	ĮИИ					

Таблица 29

Ресурс	Объ- ем	Нормы расхода				
	pe- cypca	A	В	С		
1	120	9 2 2				
2	210	3	3	1		
3	250	2	9	3		
Цена пр ци		1	4	1		

Таблица 30

Pe-	Объем	Нормы расхо-			
cypc			да		
	pe-	A B			
	pe- cypca				
1	120	3	8	2	
2	300	5	4	3	
3	220	2	4	5	
Цена	продук-	12	5	3	
I	ции				

Пример решения и анализа двойственных задач линейного программирования

В качестве примера двойственных задач рассмотрим следующую задачу.

Пример 1. Фирма выпускает продукцию A, B, C, D, используя для ее производства три вида ресурсов в количестве соответственно 260, 400, 240 единиц. Расход каждого ресурса на единицу выпускаемой продукции и цена единицы каждого вида продукции заданы таблицей:

Вид	Объем	Нормы расхода ресурсов					
pecypca	pecypca	A	В	C	D		
1	260	2	1	3	1		
2	400	1	2	1	2		
3	240	2	0	1	2		
Цена, у.е.		1	4	2	5		

Определить план выпуска продукции, обеспечивающий фирме максимум стоимости выпускаемой продукции, и оценить каждый вид ресурсов. Оценки, приписываемые каждому ресурсу, должны быть такими, чтобы оценка всех ресурсов была минимальной, а суммарная оценка ресурсов, используемых на производство единицы каждого вида продукции, — не меньше цены единицы продукции данного вида.

Решение. Обозначим через $X = (x_1, x_2, x_3, x_4)^T$ план выпуска продукции. Тогда математическая модель задачи нахождения оптимального плана, максимизирующего суммарную стоимость продукции, примет вид:

$$F = x_1 + 4x_2 + 2x_3 + 5x_4 \rightarrow \max,$$

$$\begin{cases} 2x_1 + x_2 + 3x_3 + x_4 \le 260, \\ x_1 + 2x_2 + x_3 + 2x_4 \le 400, \\ 2x_1 + x_3 + 2x_4 \le 240, \end{cases}$$

$$x_j \ge 0 \quad (j = \overline{1, 4}).$$

Поставим в соответствие первому ресурсу оценку y_1 , второму $-y_2$, третьему $-y_3$. Тогда общая оценка ресурса, используемого на производство продукции, составит:

$$Z = 260y_1 + 400y_2 + 240y_3.$$

Цель задачи – минимизировать эту величину.

Суммарная оценка ресурса, необходимого для производства единицы продукции А, равна

$$2y_1 + y_2 + 2y_3$$
.

Согласно условию задачи эта величина должна быть не меньше цены единицы продукции А, т.е.

$$2y_1 + y_2 + 2y_3 \ge 1$$
.

Из аналогичных соображений получаем:

$$\begin{cases} y_1 + 2y_2 \ge 4, \\ 3y_1 + y_2 + y_3 \ge 2, \\ y_1 + 2y_2 + 2y_3 \ge 5. \end{cases}$$

Естественно предположить, что оценки y_1, y_2, y_3 неотрицательны, т.е. $y_1 \ge 0$, $y_2 \ge 0$, $y_3 \ge 0$.

Итак, получаем математическую модель двойственной задачи:

$$Z = 260y_1 + 400y_2 + 240y_3 \rightarrow \min,$$

$$\begin{cases} 2y_1 + y_2 + 2y_3 \ge 1, \\ y_1 + 2y_2 \ge 4, \\ 3y_1 + y_2 + y_3 \ge 2, \\ y_1 + 2y_2 + 2y_3 \ge 5, \end{cases}$$

$$y_i \ge 0 \quad (i = \overline{1,3})$$

которую называют двойственной к задаче оптимального выпуска продукции из имеющихся ресурсов.

Компоненты y_1^*, y_2^*, y_3^* оптимального плана $Y^*(y_1^*, y_2^*, y_3^*)$ называют *оптимальными оценка-ми ресурсов*. Это оценки ресурсов в условиях *конкретной* задачи. Одни и те же ресурсы для разных предприятий представляют различную ценность. Изменение запасов ресурсов приводит к необходимости их переоценки. Следуя Л.В. Канторовичу, будем называть их *объективно обусловленными оценками*.

Оптимальные решения прямой и двойственной задач будут найдены позже.

Пример 2. Для задачи оптимального использования ресурсов (см. пример 1), математическая модель которой имеет вид:

$$F = x_1 + 4x_2 + 2x_3 + 5x_4 \rightarrow \max,$$

$$\begin{cases} 2x_1 + x_2 + 3x_3 + x_4 \le 260, \\ x_1 + 2x_2 + x_3 + 2x_4 \le 400, \\ 2x_1 + x_3 + 2x_4 \le 240, \end{cases}$$

$$x_j \ge 0 \quad (j = \overline{1, 4}).$$

требуется:

- 1) определить интервалы устойчивости двойственных оценок;
- 2) установить величину максимальной стоимости продукции при изменении объема ресурсов: первого на 40 единиц; второго на +30 единиц, третьего на 50 единиц. Оценить раздельное влияние этих изменений и суммарное их влияние на стоимость продукции;
- 3) оценить целесообразность введения в план производства фирмы четвертого вида продукции, нормы затрат ресурсов на единицу которого соответственно равны 3, 2, 8, а цена составляет 9 у.е.;
- 4) оценить целесообразность дополнительной закупки 100 единиц третьего ресурса по цене 0,25 у.е.

Решение

1. Прежде всего перейдем к каноническим формам моделей, введя неотрицательные балансовые переменные. Для прямой задачи добавим x_5 , x_6 , x_7 , для двойственной - вычтем $y_4...y_7$:

$$Z = 260y_1 + 400y_2 + 240y_3 \rightarrow \min,$$

$$F = x_1 + 4x_2 + 2x_3 + 5x_4 \rightarrow \max,$$

$$\begin{cases} 2x_1 + x_2 + 3x_3 + x_4 + x_5 = 260, \\ x_1 + 2x_2 + x_3 + 2x_4 + x_6 = 400, \\ 2x_1 + x_3 + 2x_4 + x_7 = 240, \end{cases}$$

$$\begin{cases} 2y_1 + y_2 + 2y_3 - y_4 = 1, \\ y_1 + 2y_2 - y_5 = 4, \\ 3y_1 + y_2 + y_3 - y_6 = 2, \\ y_1 + 2y_2 + 2y_3 - y_7 = 5, \end{cases}$$

$$x_i \ge 0 \quad (j = \overline{1,7}).$$

$$y_i \ge 0 \quad (i = \overline{1,7})$$

В Excel обе модели можно представить следующим образом:

	x1	x 2	x 3	x4	x5	x6	x7	b
y1	2	1	3	1	1	0	0	260
y2	1	2	1	2	0	1	0	400
y3	2	0	1	2	0	0	1	240
y4	-1	0	0	0				= Zmin
y5	0	-1	0	0				
y6	0	0	-1	0				
y7	0	0	0	-1				
Fmax =	1	4	2	5	c			

Рисунок 1 – Взаимно двойственные модели ЗЛП

Эта форма представления потребуется в дальнейшем для анализа чувствительности решения.

Далее будем решать прямую задачу.

В качестве базисных выберем балансовые переменные и представим исходную симплекстаблицу в виде:

	$b\backslash f$	x1	x2	x3	x4	b
	x5	2	1	3	1	260
	x6	1	2	1	2	400
	x7	2	0	1	2	240
Fmax	-cj	-1	-4	-2	-5	0

Выполняя известные итерации

	b∖f	x 1	x2	x3	x4	b	b/ai
	x5	2	1	3	1	260	260
	x 6	1	2	1	2	400	200
	x 7	2	0	1	2	240	120
Fmax	-cj	-1	-4	-2	-5	0	
	b\f	x 1	x2	x3	x7	ь	b/ai
	x5	1	1	2,5	-0,5	140	140
	x6	-1	2	0	-1	160	80
	x4	1	0	0,5	0,5	120	
Fmax	-cj	4	-4	0,5	2,5	600	
в итоге по	-		_		_		
	b\f	x1	x6	х3	x7	bb	
	x5	1,5	-0,5	2,5	0	60	
	x2	-0,5	0,5	0	-0,5	80	
	x4	1	0	0,5	0,5	120	
Fmax	-cj	2	2	0,5	0,5	920	

Принимая во внимание соответствие переменных

x1	x2	x3	x4	x5	x6	x7
y4	y5	у6	y7	y1	y2	y3

последнюю симплекс-таблицу представим в виде:

f\b		y4	y2	у6	y3	Zmin
	$b \setminus f$	x1	x6	x3	x7	bb
y1	x5	1,5	-0,5	2,5	0	60
y5	x 2	-0,5	0,5	0	-0,5	80
y7	x4	1	0	0,5	0,5	120
Fmax	-cj	2	2	0,5	0,5	920

Сдвоенная линия обозначает знак равенства, поэтому в отношение целевых функций справедливы выражения:

$$\begin{split} F_{\text{max}} + 2x_1 + 2x_6 + 0.5x_3 + 0.5x_7 &= 920 \quad \text{или} \quad F_{\text{max}} = 920 - 2x_1 - 2x_6 - 0.5x_3 - 0.5x_7; \\ Z_{\text{min}} = 60y_1 + 80y_5 + 120y_7 + 920 \qquad \qquad \text{или} \quad Z_{\text{min}} - 60y_1 - 80y_5 - 120y_7 &= 920 \;. \end{split}$$

Как видно из таблицы, базисными переменными в оптимальном решении X являются переменные x_5, x_2, x_4, a в оптимальном решении $Y - y_4, y_2, y_6, y_3$:

0	80	0	120	60	0	0
x1	x2	x3	x4	x5	x6	x7
y4	y5	у6	y7	y1	y2	у3
2	0	0,5	0	0	-2	0,5

Определим интервалы устойчивости двойственных оценок (допустимые изменения ресурсов).

Для этого в исходной модели (рис. 1) выразим базисные переменные: x_5, x_2, x_4 через свободные:

Т.о. надо выписать матрицу коэффициентов при базисных переменных: x_5 , x_2 , x_4 в первоначальной системе ограничений и найти обратную ей матрицу:

$$A_{B} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}, \quad A_{B}^{-1} = D = \begin{pmatrix} 1 & -1/2 & 0 \\ 0 & 1/2 & -1/2 \\ 0 & 0 & 1/2 \end{pmatrix}.$$

Из (2) следует, что варьируя значения ресурсов b, значения базисных переменных будут изменяться, но обязательным условием является их неотрицательность. Из этого требования определяем пределы изменения запасов dbi как в сторону уменьшения,

так и в сторону их увеличения

Эти условия в привычной форме записи имеют вид:

$$\begin{pmatrix} 60 \\ 80 \\ 120 \end{pmatrix} - \begin{pmatrix} 1 & -1/2 & 0 \\ 0 & 1/2 & -1/2 \\ 0 & 0 & 1/2 \end{pmatrix} \begin{pmatrix} \Delta b_1^H \\ \Delta b_2^H \\ \Delta b_3^H \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}; \qquad \begin{pmatrix} 60 \\ 80 \\ 120 \end{pmatrix} + \begin{pmatrix} 1 & -1/2 & 0 \\ 0 & 1/2 & -1/2 \\ 0 & 0 & 1/2 \end{pmatrix} \begin{pmatrix} \Delta b_1^B \\ \Delta b_2^B \\ \Delta b_3^B \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Теперь можем воспользоваться формулами для нахождения нижней и верхней границ интервалов устойчивости оценок по видам ресурсов.

Используя формулы
$$\Delta b_i^H = \min_{d>0} \left\{ \frac{b_j}{d_{ij}} \right\}; \qquad \Delta b_i^B = \min_{d<0} \left\{ \frac{b_j}{|d_{ij}|} \right\} \,,$$

Найдем необходимые пределы:

Ресурс 1. Нижняя граница:
$$\Delta b_1^H = \min_{d>0} \left\{ \frac{b_j}{d_{1j}} \right\} = \frac{60}{1} = 60.$$

Верхняя граница: $\Delta b_1^s = \infty$, так как среди элементов первого столбца матрицы D нет отрицательных.

Итак, $\Delta b_1 \in (-60, \infty)$, т.е. первый ресурс может изменяться в интервале:

$$(b_1 - \Delta b_1^H, b_1 + \Delta b_1^g) = (260 - 60, \infty) = (200, \infty),$$

при этом оптимальный план двойственной задачи остается неизменным.

Аналогичные рассуждения позволяют найти интервалы устойчивости оценок для второго и третьего ресурсов.

Ресурс 2. Нижняя граница:
$$\Delta b_2^H = \min_{d>0} \left\{ \frac{b_j}{d_{2j}} \right\} = \frac{80}{0.5} = 160.$$

Верхняя граница:
$$\Delta b_2^B = \min_{d < 0} \left\{ \frac{b_j}{\left| d_{2j} \right|} \right\} = \frac{60}{\left| -0, 5 \right|} = 120$$
.

Итак, $\Delta b_2 \in (-160; 120)$.

Получаем интервал устойчивости оценок по отношению ко второму ограничению:

$$(b_2 - 160, b_2 + 120) = (240, 520).$$

Ресурс 3. Нижняя граница:
$$\Delta b_3^H = \min_{d>0} \left\{ \frac{b_j}{d_{3j}} \right\} = \frac{120}{0.5} = 240.$$

Верхняя граница:
$$\Delta b_3^B = \min_{d < 0} \left\{ \frac{b_j}{\left| d_{3j} \right|} \right\} = \frac{80}{\left| -0, 5 \right|} = 160$$
.

Интервал устойчивости оценок по отношению к третьему ограничению имеет вид:

$$(b_3 - \Delta b_3^H, b_3 + \Delta b_3^g) = (240 - 240, 240 + 160) = (0, 400).$$

Найдем интервалы устойчивости оптимального решения (пределы изменения коэффициентов целевой функции).

Для этого в исходной модели (рис. 1) выразим базисные переменные двойственной задачи: y_4, y_6, y_2, y_3 через свободные:

$$Y^{T}A = C^{T} \rightarrow Y_{B}^{T}A_{B} + Y_{F}^{T}A_{F} = C^{T}$$

$$y^{4} -1 \quad 0 \quad 0 \quad 0$$

$$y^{2} \quad 1 \quad 2 \quad 1 \quad 2$$

$$y^{6} \quad 0 \quad 0 \quad -1 \quad 0$$

$$y^{3} \quad 2 \quad 0 \quad 1 \quad 2$$

$$y^{4} \quad 1 \quad 3 \quad 1$$

$$y^{5} \quad 0 \quad -1 \quad 0 \quad 0$$

$$y^{7} \quad 0 \quad 0 \quad 0 \quad -1$$

$$= \frac{1}{1 \quad 4 \quad 2 \quad 5} \quad c$$

$$Y_{B}^{T} = -Y_{F}^{T}A_{F}A_{B}^{-1} + C^{T}A_{B}^{-1}, \quad \text{где} \quad D = A_{B}^{-1}$$

$$y^{4} \quad y^{2} \quad y^{6} \quad y^{3}$$

$$= \frac{1}{1 \quad 1,5 \quad -0,5 \quad 2,5 \quad 0} \quad 0$$

$$y^{5} \quad -0,5 \quad 0,5 \quad 0 \quad -0,5$$

$$y^{7} \quad 1 \quad 0 \quad 0,5 \quad 0,5$$

$$+ \quad 2 \quad 2 \quad 0,5 \quad 0,5 \quad cb$$

Т.о. надо выписать матрицу коэффициентов при базисных переменных: y_4 , y_6 , y_2 , y_3 в первоначальной системе ограничений двойственной задачи и найти обратную ей матрицу.

Выпишем строки y_4, y_6, y_2, y_3 из исходной расширенной матрицы A (см. рис.1)

Найдем обратную D

$$D = \begin{bmatrix} -1 & 0 & 0 & 0 \\ -0.5 & 0 & 0.5 & -0.5 \\ 0 & -1 & 0 & 0 \\ 1 & 0.5 & 0 & 0.5 \end{bmatrix}$$

Из (4) следует, что варьируя значения коэффициентов С целевой функции, значения базисных переменных будут изменяться, но обязательным условием является их неотрицательность. Из этого требования определяем пределы изменения коэффициентов Сі как в сторону уменьшения, так и в сторону их увеличения

Эти условия в привычной форме записи имеют вид: $y_B^T + \Delta c^T A_B^{-1} \ge 0$

$$(2 \quad 1/2 \quad 2 \quad 1/2) - (\Delta c_1^H \quad \Delta c_2^H \quad \Delta c_3^H \quad \Delta c_4^H) \begin{pmatrix} -1 & 0 & 0 & 0 \\ -1/2 & 0 & 1/2 & -1/2 \\ 0 & -1 & 0 & 0 \\ 1 & 1/2 & 0 & 1/2 \end{pmatrix} \ge (0 \quad 0 \quad 0)$$

$$(2 \quad 1/2 \quad 2 \quad 1/2) + (\Delta c_1^B \quad \Delta c_2^B \quad \Delta c_3^B \quad \Delta c_4^B) \begin{pmatrix} -1 & 0 & 0 & 0 \\ -1/2 & 0 & 1/2 & -1/2 \\ 0 & -1 & 0 & 0 \\ 1 & 1/2 & 0 & 1/2 \end{pmatrix} \ge (0 \quad 0 \quad 0)$$

Используя формулы
$$\Delta c_i^H = \min_{d>0} \left\{ \frac{\mathcal{Y}_j}{d_{ij}} \right\}; \qquad \Delta c_i^B = \min_{d<0} \left\{ \frac{\mathcal{Y}_j}{\left| d_{ij} \right|} \right\} \,,$$

Найдем необходимые пределы

наидем необходимые пределы:
$$\Delta c_1^H = \infty; \qquad \Delta c_1^B = \min_{d < 0} \left\{ \frac{2}{|-1|} \right\} = 2; \qquad \left(c_1 - \Delta c_1^H, c_1 + \Delta c_1^B \right) = \left(1 - \infty, 1 + 2 \right) = \left(-\infty, 3 \right);$$

$$\Delta c_2^H = \min_{d>0} \left\{ \frac{2}{1/2} \right\} = 4; \qquad \Delta c_2^B = \min_{d<0} \left\{ \frac{2}{1/2}; \frac{1/2}{1/2} \right\} = 1; \quad \left(c_2 - \Delta c_2^H, c_2 + \Delta c_2^B \right) = (0,5);$$

$$\Delta c_3^H = \infty; \qquad \Delta c_3^B = \min_{d < 0} \left\{ \frac{1/2}{|-1|} \right\} = 1/2; \qquad \left(c_3 - \Delta c_3^H, c_3 + \Delta c_3^B \right) = \left(2 - 1, 2 + \infty \right) = \left(1, \infty \right);$$

$$\Delta c_4^H = \min_{d > 0} \left\{ \frac{2}{1}; \frac{1/2}{1/2}; \frac{1/2}{1/2} \right\} = 1; \qquad \Delta c_4^B = \infty; \left(c_4 - \Delta c_4^H, c_4 + \Delta c_4^B \right) = \left(5 - 1, 5 + \infty \right) = \left(4, \infty \right);$$

Далее оценим влияние изменения объема ресурсов

$$(\Delta b_1 = -40; \quad \Delta b_2 = 30; \quad \Delta b_3 = 50)$$

на величину максимальной стоимости продукции. Замечаем, что все величины Δb_i находятся в пределах интервалов устойчивости двойственных оценок, поэтому, согласно теореме об оценках, можно определить раздельное и суммарное влияние этих изменений.

Раздельное влияние:

$$\Delta F_{\text{max}}^1 \approx -40 \cdot 0 = 0$$
, T.e.

уменьшение запаса первого ресурса на 40 единиц не приводит к изменению F_{max} ;

$$\Delta F_{\text{max}}^2 \approx 30 \cdot 2 = 60;$$

$$\Delta F_{\text{max}}^3 \approx 50 \cdot 1 / 2 = 25.$$

Совместное влияние изменений всех ресурсов приводит к изменению максимальной стоимости продукции F_{max} на величину

$$\Delta F_{\text{max}} \approx \sum_{i=1}^{3} \Delta F_{\text{max}}^{i} = 0 + 60 + 25 = 85.$$

Иными словами, мы нашли оптимальное значение целевой функции

$$F_{\text{max}} \approx 920 + 85 = 1005$$

для задачи:

$$F = x_1 + 4x_2 + 2x_3 + 5x_4 \to \max,$$

$$\begin{cases} 2x_1 + x_2 + 3x_3 + x_4 \le 220, \\ x_1 + 2x_2 + x_3 + 2x_4 \le 400, \\ 2x_1 + x_3 + 2x_4 \le 290, \end{cases}$$

$$x_j \ge 0 \quad (j = \overline{1,4}).$$

Оценим целесообразность введения в план производства фирмы пятого вида продукции.

Для этого определим, в каком отношении находятся цена c_5 =9 пятого вида продукции и суммарная оценка $\sum_{i=1}^{3} a_{i5} \cdot y_i^*$ затрат ресурсов на производство одной единицы этой продукции:

$$\sum_{i=1}^{3} a_{i5} \cdot y_{i}^{*} = 3 \cdot 0 + 2 \cdot 2 + 8 \cdot 1/2 = 8.$$

Очевидно, $\sum_{i=1}^{3} a_{i5} \cdot y_{i}^{*} < c_{5}$. Так как цена реализации продукции превышает затраты на ее производство, то введение в план производства пятого вида продукции выгодно.

Оценим теперь эффективность мероприятия по «расшивке» узких мест.

Пусть имеется возможность приобрести дополнительно 100 единиц третьего ресурса по цене $p_3 = 0.25$ у.е. Изменение третьего ресурса $\Delta b_3 = 100$ находится в пределах устойчивости двойственных оценок, поэтому его влияние на величину максимальной стоимости продукции можно определить с помощью теоремы об оценках:

$$\Delta F_{\text{max}}^3 \approx y_3^* \cdot \Delta b_3 = \frac{1}{2} \cdot 100 = 50 \text{ y.e.}$$

Затраты ΔP на приобретение 100 единиц третьего ресурса:

$$\Delta P = p_3 \cdot \Delta b_3 = 0.25 \cdot 100 = 25 \text{ y.e.}$$

Таким образом, данное мероприятие является эффективным, оно обеспечивает дополнительную прибыль в объеме:

$$\Delta F_{\text{max}} \approx \Delta F_{\text{max}}^3 - \Delta P = 50 - 25 = 25 \text{ y.e.}$$

Эта прибыль достигается лишь за счет рационального перераспределения ресурсов и соответствующей корректировки плана в связи с увеличением лимита дефицитного ресурса.